

Auditor Independence and Experience on the Auditor's Ability to Detect Fraud

Maya Sari^{1*}, Zihanaya Fahrira¹

¹Universitas Muhammadiyah Sumatera Utara
Jl. Kapten Mukhtar Basri No. 3 Medan, North Sumatra, Indonesia
*E-mail:mayasari@umsu.ac.id

ABSTRACT

This research aims to determine, analyze, and obtain evidence of the influence of auditor independence and experience on the auditor's ability to detect fraud at Public Accounting Firms in Medan. The population used in this research were auditors who worked at Public Accounting Firms in Medan. The sample for this research was 35 auditors from 173 who worked in public accounting firms. The data collection technique uses a questionnaire, measured using a Likert scale. The analysis technique in this research uses Structural Equation Model (SEM) analysis with the help of the Smart PLS version 4.0 program. The research results show that the variables of independence and auditor experience influence the auditor's ability to detect fraud. The analysis results show that independence in the auditor's ability to detect fraud has a path coefficient of 0.735. Auditor experience on the auditor's ability to detect fraud has a path coefficient of 0.663.

Keywords: Independence, Auditor Experience, Internal Auditor, Ability Detecting Fraud

DOI: <https://doi.org/10.55983/ijeset.v2i1.434>

INTRODUCTION

Public accountants are responsible for detecting fraud by providing services based on applicable Auditing Standards (SA). An auditor requires competence through experience and knowledge to detect fraud in financial reports. Fraud in companies is growing; the more sophisticated and modern the times, the more fraud cases occur. It is increasingly easy for fraudsters to commit fraud because of internet fraud and computer fraud by manipulating computer programs and data to gain individual profits and harm the company (Kassem, 2023). Fraud can occur in companies, organizations, and even government agencies. This shows that fraud must be handled immediately (Salsabil, 2020).

In auditing standards for examining the preparation of financial reporting, an audit process is designed to provide confidence that the financial statements do not incur misstatements. Misstatements in preparing financial reports consist of two types: errors and fraud. Fraud is translated as cheating according to Statement of Auditing Standards (PSA) No. 70; likewise, errors and irregularities are respectively translated as errors and irregularities according to the previous PSA, namely PSA No. 32 (Jefri & Mediati, 2014). Fraud is an act against or breaking the law by different people inside or outside the organization to gain personal or group benefits that directly harm other parties (Silalahi, 2014). Detecting fraud is caused by several factors, for example, different workload levels for an auditor, the training an auditor receives, and the time pressure situations an auditor must face at work (Gizta, 2020). Second, opportunity is a situation that opens up opportunities for individuals who will commit fraud. Finally, rationalization or lack of integrity, namely behavior that allows management or employees to commit acts of fraud (Anggriawan, 2014).

Another factor that triggers fraud is weak internal control over human resources in a company. This can happen because of limited communication between top managers and the company's operational lines. This limited communication causes fraud, for example, data theft, forgery, embezzlement, and extortion. It is even worse if the perpetrator has power in the company. This will have fatal consequences for the company if its human resources employees will bring down the company for their interests. The emergence of fraud problems will reduce the value of a company (Asriadi, Menne, & Setiawan, 2021). Companies can handle fraud by implementing principles such as honesty and openness. These two things are important in a relationship within a company. Openness can occur because there is good communication between both parties; this communication can be carried out between employees, managers, and subordinates and vice versa. Once the auditor knows the factors of fraud, it can make it easier for the auditor to have the ability to detect fraud.

According to (Faradina, 2016), an auditor's ability to detect fraud is the quality of an auditor explaining the unfairness of a financial report presented by a company or organization by identifying and proving the fraud. This is reinforced by the opinion of (Widiyastuti & Pamudji, 2009), who state that the auditor's ability to detect fraud is the auditor's ability and willingness to detect whether it exists.

Independence is a mental attitude that is free from influence, is not controlled by other parties, and is not dependent on other people; independence also means honesty within the auditor to consider facts and have objective considerations in formulating and expressing his opinion (Mulyadi, 2009). Auditor independence has a relationship with detecting fraud. This can be seen from several aspects of independence, namely honesty on the part of the auditor

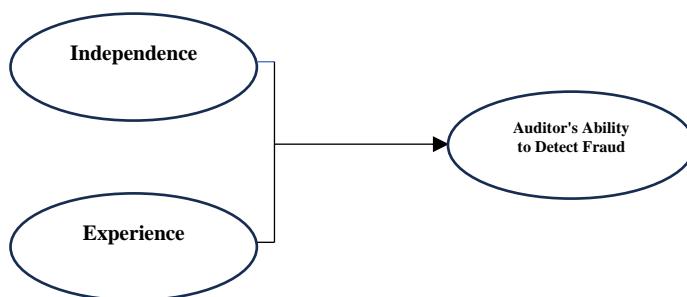
in reviewing various information found in the audit. The auditor must disclose whether the findings or information obtained from the financial reports prepared by the company have errors or are not by existing findings or information (Wedemeyer, 2010). Independence positively influences the auditor's responsibility in detecting fraud (Noch, Ibrahim, Akbar, Kartim, & Sutisman, 2022) The attitude of independence shows that the auditor's decision does not take sides with any of the interested parties if the auditor finds fraud, even though it can impact one (Biksa & Wiratmaja, 2016). Auditor independence is measured by four indicators: length of relationship with the client, pressure from the client, review from fellow auditors, and non-audit services.

Auditor experience is knowledge or expertise of an event through direct observation and participating in events related to fraud so that the auditor will know the sensitivity to signs of fraud, as explained by (Anggriawan, 2014). The auditor's experience influences fraud detection. The experience factor plays an important role in auditors' ability to detect fraud because more experience will produce more knowledge (Iskandar, Ramadhan, Mansyuri, & Ramadhan, 2022). The government requires at least three years of work experience as an accountant with a good reputation in the audit field for accountants who wish to obtain a license to practice in the public accounting profession (Minister of Finance Decree No.43/KMK.017/1997 dated 27 January 1997). Auditor experience is measured by three indicators: length of time working as an auditor, number of assignments completed in 1 year, and type of company handled in 1 year. From the phenomena that occur above, there are still many cases of fraud and lack of independence, which impacts companies and auditors who must be borne by applicable regulations, as well as the lack of experience of auditors resulting in fraud in the implementation of audits.

Conceptual Framework

The Effect of Independence on the Auditor's Ability to Detect Fraud

An auditor who is said to be independent is an auditor who provides a true assessment of the object being examined and is free from burdens on any party. Thus, if the auditor is highly committed to maintaining an independent attitude, then this independent attitude can increase the auditor's ability to detect fraud. The results of research by (Widiyastuti & Pamudji, 2009), (Peuranda, Hasan, & Silfi, 2019) which show the same findings, namely finding empirical evidence that independence has a positive effect on the ability of auditors to detect fraud. However, the results of the first hypothesis of this study indicate that independence has no effect on the auditor's ability to detect fraud.


The Influence of Auditor Experience on the Auditor's Ability to Detect Fraud

Audit experience is an individual factor that can only be developed by the number of assignments performed by an auditor and can affect the auditor's ability to detect fraud. There is a positive influence between work experience and the auditor's ability to detect fraud; this shows that the more work experience an auditor has, the better the auditor's ability to detect fraud. (Arsendy, 2017) research suggests that audit experience positively affects the auditor's ability to detect fraud. This research indicates that auditors with high audit experience tend to have a high ability to detect fraud and vice versa if an auditor with low audit experience tends to be less good at detecting fraud (Anggriawan, 2014).

The Influence of Auditor Independence and Experience on the Auditor's Ability to Detect Fraud

Auditors who can detect fraud will be able to identify fraud indicators in their agency that require further inspection (investigation) (Iskandar et al., 2022). The auditor's ability to detect fraud is measured by knowledge about fraud and ability in the detection stage. A higher attitude of independence will make it easier to detect fraud, as will the auditor's experience. If the auditor is experienced, the auditor with much experience will find it easier to understand and detect fraud committed by the company. Someone with much experience will become more proficient and expert in pursuing their field. Anything done repeatedly will make someone more used to it, and it will be easier to do it (Annelin & Svanström, 2022). Likewise, for auditors, the experiences that auditors have will be very useful in carrying out future audits. Another factor that influences the detection of fraud is the attitude of independence. Auditors, in carrying out their duties, are required to be independent from any party. The higher an auditor's independent attitude, the greater his ability to detect fraud (Indrawati, Cahyono, & Maharani, 2019).

Based on the explanation above, by adapting previous research, the influence of auditor independence and experience on the auditor's ability to detect fraud in public accounting firms can be described as follows:

Figure 1. Conceptual Framework

METHOD

This research uses an associative research approach, namely to find out the relationship between two or more variables that are not mutually binding, and uses a quantitative approach, namely a process of finding knowledge that uses data in the form of numbers as a tool to determine information about what you want to know. This research aims to explain the relationship between auditor independence and auditor experience and the auditor's ability to detect fraud at the Public Accounting Firms in Medan City. In this case, the sampling technique is to use the saturated sample method. The entire population was sampled in this research, so the sample size was 173 respondents. The samples studied were auditors at the Public Accounting Firm in Medan City who were registered with the Ministry of Finance's PPPK. The data source required in this research is primary data. Primary data was collected in this research by distributing questionnaires and conducting direct interviews with parties related to the research, namely at the Public Accounting Firms in Medan City. The data analysis technique for this research uses statistical analysis, namely the partial least squares—structural equation model (PLS-SEM), which aims to carry out path analysis with latent variables.

RESULTS AND DISCUSSION

Convergent Validity

Convergent validity from a measurement model with a reflective model, indicators are assessed based on the correlation between the item or component score and the construct score on the Loading Factor calculated using PLS. A reflective measure is said to be high if it correlates more than 0.5 with the construct to be measured.

Convergent Validity on Independence

There are eight construct indicators in the Independence variable. Based on the results of data analysis, convergent validity values were obtained through *the loading factor* in the table below:

Table 1. Convergent Validity of Independence

Indicator	Independence	Rule Of Thumb	Information
X1.1	0.144	0.50	Invalid
X1.2	0.779	0.50	Valid
X1.3	0.726	0.50	Valid
X1.4	0.549	0.50	Invalid
X1.5	-0.046	0.50	Invalid
X1.6	0.104	0.50	Invalid
X1.7	0.836	0.50	Valid
X1.8	0.874	0.50	Valid

Based on the table 1 above, obtained from the Convergent Validity test for the Independence variable, several construct indicator results were obtained, valid >0.50 and invalid because they were below 0.50.

Convergent Validity in Auditor Experience

There are seven construct indicators in the Auditor Experience variable. Based on the results of data analysis, convergent validity values were obtained through loading factors in the table below:

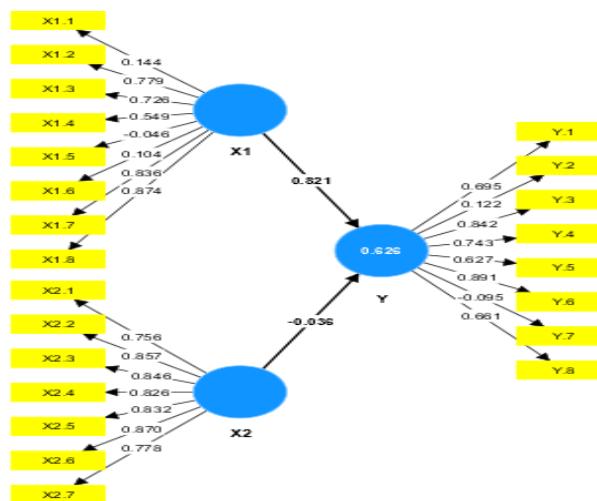
Table 2. Convergent Validity of Auditor Experience

Indicator	Auditor Experience	Rule Of Thumb	Information
X2.1	0.756	0.50	Valid
X2.2	0.857	0.50	Valid
X2.3	0.846	0.50	Valid
X2.4	0.826	0.50	Valid
X2.5	0.832	0.50	Valid
X2.6	0.870	0.50	Valid
X2.7	0.778	0.50	Valid

Based on the table 2 above, it was obtained from the Convergent Validity test for the Auditor Experience variable that all valid construct indicator results were obtained because they were more than 0.50.

Convergent Validity on the Auditor's Ability to Detect Fraud

There are eight construct indicators for the Auditor Experience variable. Based on the results of data analysis, convergent validity values were obtained through loading factors in the table below:


Table 3. Convergent Validity of Auditor's Ability to Detect Fraud

Indicator	Independence	Rule Of Thumb	Information
Y.1	0.695	0.50	Valid
Y.2	0.122	0.50	Invalid
Y.3	0.842	0.50	Valid
Y.4	0.743	0.50	Valid
Y.5	0.627	0.50	Valid
Y.6	0.891	0.50	Valid
Y.7	-0.095	0.50	Invalid
Y.8	0.661	0.50	Valid

Based on the table 3 above obtained from the Convergent Validity test for the Auditor's Ability to Detect Fraud variable, several indicator results were obtained, valid >0.50 and invalid because they were below 0.50.

The convergent validity test concludes that all loading values are above 0.5, so it can be concluded that all loading values are adequate.

The results of the measurement model evaluation for each construct indicator of convergent validity through loading factors can also be seen in the image below:

Figure 2. SEM-PLS Path Coefficient

Convergent Validity on Independence

Based on the results of data analysis, values were obtained *convergent validity* through loading factors in the table below:

Table 4. Convergent Validity of Independence

Indicator	Independence	Rule Of Thumb	Information
X1.2	0.810	0.50	Valid
X1.3	0.759	0.50	Valid
X1.7	0.894	0.50	Valid
X1.8	0.829	0.50	Valid

From the results of table 4. above, the construct indicators for the Independence variable total four construct indicators after retesting without using invalid construct indicators to obtain valid construct indicators.

Convergent Validity in Auditor Experience

Based on the results of data analysis, values were obtained *convergent validity* through loading factors in the table below:

Table 5. Convergent Validity of Auditor Experience

Indicator	Auditor Experience	Rule Of Thumb	Information
X2.1	0.740	0.50	Valid
X2.2	0.875	0.50	Valid
X2.3	0.859	0.50	Valid
X2.4	0.810	0.50	Valid
X2.5	0.850	0.50	Valid
X2.6	0.884	0.50	Valid
X2.7	0.758	0.50	Valid

From the results of Table 5 above, the construct indicators for the Auditor Experience variable remain seven construct indicators because they are valid from Table 4.10.

Convergent Validity on the Auditor's Ability to Detect Fraud

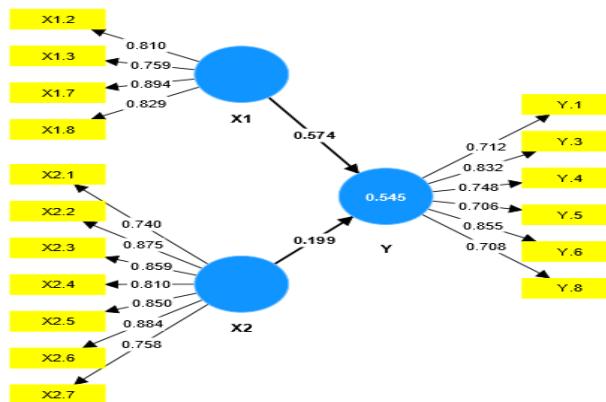

Based on the results of data analysis, values were obtained *convergent validity* through loading factors in the table below:

Table 6. Convergent Validity of Auditor's Ability to Detect Fraud

Indicator	Detecting Fraud	Rule Of Thumb	Information
Y.1	0.712	0.50	Valid
Y.3	0.832	0.50	Valid
Y.4	0.748	0.50	Valid
Y.5	0.706	0.50	Valid
Y.6	0.855	0.50	Valid
Y.8	0.708	0.50	Valid

From the table above results, the construct indicators for the variable Auditor's Ability to Detect Fraud amount to 6 construct indicators after retesting without using invalid construct indicators, aiming to obtain valid construct indicators.

The results of the measurement evaluation for each construct indicator of convergent validity through factor loading can also be seen in the image below:

Figure 3. SEM-PLS Path Coefficient

Discriminant Validity

In this section, the test results will be described as *discriminant validity*. According to (Ghozali & Latan, 2015), the discriminant validity method tests discriminant validity with reflexive indicators by looking at the cross-loading value. Apart from that, another way that can be used to see whether a model has discriminant validity is by comparing the square root of the Average Variance Extracted (AVE) value for each construct with the correlation between other constructs in the model.

Table 7. Cross loading

Indicator	Independence	Auditor Experience	Auditor's Ability to Detect Fraud
X1.2	0.810	0.614	0.565
X1.3	0.759	0.335	0.363
X1.7	0.894	0.674	0.529
X1.8	0.829	0.779	0.789
X2.1	0.763	0.740	0.508
X2.2	0.494	0.875	0.500
X2.3	0.531	0.859	0.572
X2.4	0.773	0.810	0.637
X2.5	0.414	0.850	0.438
X2.6	0.564	0.884	0.487
X2.7	0.863	0.758	0.521
X.1	0.561	0.388	0.712
Y.3	0.740	0.533	0.832
Y.4	0.419	0.230	0.748
Y.5	0.265	0.512	0.748
Y.6	0.721	0.675	0.855
Y.8	0.378	0.511	0.708

Based on the data in Table 7 above, it can be seen that there are indicators on research variables that have the largest cross-loading values compared to the cross-loading values on other variables, and there are indicators on research variables that have the smallest cross-loading values compared to cross loading values on other variables. From the results obtained, it can be stated that the indicators used in this research have good discriminant validity in compiling their respective variables.

Apart from the observed cross-loading value, discriminant validity can also be determined through other methods, namely by looking at the Average Variance Extracted (AVE) value for each indicator; the condition is that the value must be > 0.5 for a good model below is table 8 Average Variance Extracted (AVE).

Table 8. Average Variance Extracted (AVE)

Variable	Average Variance Extracted (AVE)	Information
Independence (X1)	0.680	Valid
Auditor Experience (X2)	0.684	Valid
Auditor's Ability to Detect Fraud (Y)	0.582	Valid

Table 8 shows that the AVE value for the Independence variable is 0.680, the Auditor Experience variable is 0.684, and the Auditor Ability to Detect Fraud variable is 0.582. Each variable has a value > 0.5 , meaning each variable has good discriminant validity.

Composite Reliability

Measuring the reliability of a construct with reflexive indicators can be done by measuring the Composite Reliability value. Composite reliability measures the true value of the reliability of a construct. A construct is reliable if the composite reliability value is > 0.07 (Abdillah & Hartono, 2015).

Table 9. Composite Reliability

Variable	Composite Reliability	Information
Independence (X1)	0.894	Reliable
Auditor Experience (X2)	0.938	Reliable
Auditor's Ability to Detect Fraud (Y)	0.892	Reliable

Based on Table 9, Composite Reliability, it is known that the value of all research variables is > 0.7 . These results indicate that each variable has met composite reliability, so it can be concluded that all variables have a high level of reliability.

Cronbach's Alpha

A good value or variable can be declared reliable in Cronbach's alpha if it is above or > 0.7 (Ghozali & Latan, 2015). The previous reliability test with composite reliability can be strengthened using Cronbach's alpha value.

Table 10. Cronbach's Alpha

Variable	Cronbach's Alpha	Information
Independence (X1)	0.848	Reliable
Auditor Experience (X2)	0.922	Reliable
Detecting Fraud (Y)	0.859	Reliable

Based on Table 10, Cronbach's Alpha, it is known that the value of all research variables is > 0.7 . These results indicate that each variable has met Cronbach's Alpha, so it can be concluded that all variables have a high level of reliability.

Estimated weight

Estimated weight shows that formative measurements between variables must have significant values. The significant value of the variable is usually <0.05 , but the significance value of the weight allows a value of <0.20 .

Table 11. Estimated Weight

Variable	P-Value	Information
Independence (X1)-> Auditor's Ability to Detect Fraud	0,000	Significant
Auditor Experience (X2)-> Auditor's Ability to Detect Fraud	0,000	Significant

In Table 11, it is stated that the value of Auditor Independence and Experience on Auditor's Ability to Detect Fraud < 0.05 means that the variable has a significant formative measurement model value.

R-Square

An R-Square value of 0.75 is considered strong, 0.50 is moderate, and 0.25 is low (Sarstedt & Hwang, 2020). Based on data processed in SmartPLS 4, the R-Square value is obtained:

Table 12. R-Square

Variable	R-Square
Auditor's Ability to Detect Fraud (Y)	0.545

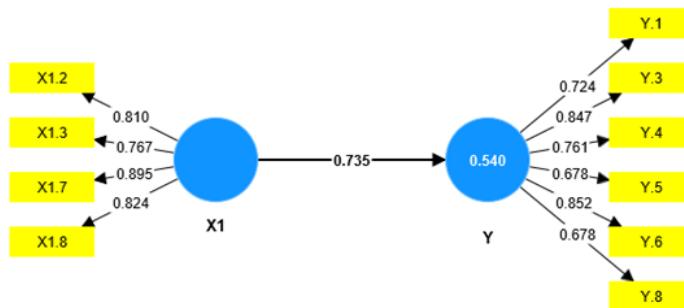
In Table 12, the R-Square value obtained is 0.545 for the Auditor Ability to Detect Fraud variable. This value explains that the variables of independence and auditor experience can only explain the audit variance of around 5.45%. Other factors influence the rest.

F-Square

F-Square is a measure used to assess the relative impact of an influencing variable (Exogenous) on the variable that is influenced (Endogenous). The criteria for concluding are if the f^2 value is 0.02, then there is a small (weak) effect of the oxygen variable on the endogenous; the f^2 value is 0.15. The exogenous variable has a moderate effect on the endogenous variable. If f^2 is 0.35, then there is a significant effect on the size of the oxygen variable compared to the endogenous one. Based on data processed in SmartPLS 4, the F-Square values are obtained in the table below:

Table 13. F-Square

Variable	F-Square
Independence (X1)	0.290
Auditor Experience (X2)	0.035


Based on table 13 above, the influence of the independence variable on the auditor's ability to detect fraud is 0.290, revealing a high effect. The influence of the auditor's experience variable on the auditor's ability to detect fraud is 0.035, revealing a low effect.

Hypothesis test

Based on the data processing that has been carried out, the results can be used to answer the hypothesis in this research. The hypothesis test is carried out by looking at t-statistics and p-value. The independent variable is declared to influence the dependent variable if the t-statistic >1.99 and p-value <0.05 . The following are tables and pictures of the data processing results using SmartPLS 4.

Table 14. T-Statistics and P-Values of Independence

Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
X1 → Y	0.735	0.758	0.097	7,581

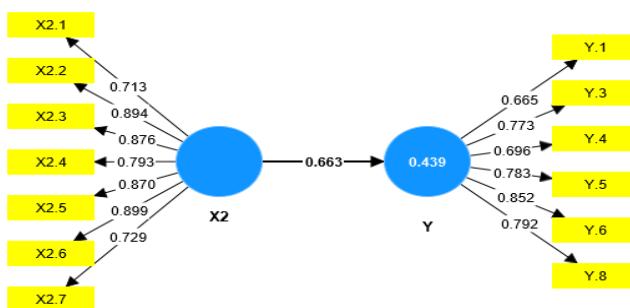


Figure 4. SEM-PLS Path Coefficient

The effect of independence on the auditor's ability to detect fraud has a path coefficient value of 0.735. This influence has a t-statistic probability value of $7.581 > 1.99$ and a p-value of $0.000 < 0.05$, so independence significantly affects the auditor's ability to detect fraud in public accounting firms in the city of Medan.

Table 15. T-Statistics and P-Values Auditor Experience

Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
X2 → Y	0.663	0.693	0.101	6,545

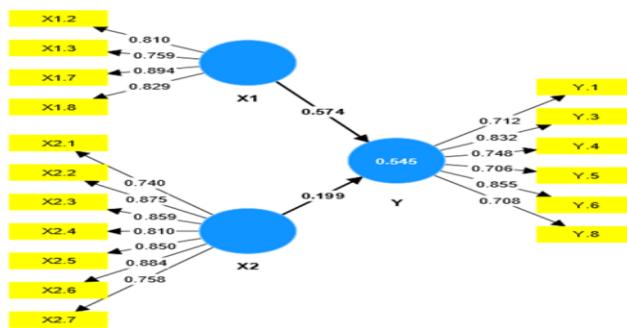


Figure 5. SEM-PLS Path Coefficient

The influence of auditor experience on the auditor's ability to detect fraud has a path coefficient of 0.663. This influence has a t-statistic probability value of $6.545 > 1.99$ and a p-value of $0.000 > 0.05$. The auditor's experience significantly affects the auditor's ability to detect fraud in public accounting firms in the city of Medan.

Table 16. T-Statistics and P-Values of Auditor Independence and Experience

Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
X1→Y	0.574	0.575	2,212	2,706
X2→Y	0.199	0.223	0.844	0.399

Figure 6. SEM-PLS Path Coefficient (X1, X2 → Y)

The influence of auditor independence and experience on the auditor's ability to detect fraud on independence has a path coefficient of 0.574. This influence has a t-statistic probability value of $2,706 < 1.99$ and a p-value of $0.007 > 0.05$. Then, independence significantly affects the auditor's ability to detect fraud in public accounting firms in the city of Medan. For Auditor Experience, it has a path coefficient value of 0.199. This influence has a t-statistic probability value of $0.844 < 1.99$ and a p-value of $0.399 > 0.05$, so the auditor's experience does not significantly affect the auditor's ability to detect fraud at public accounting firms in the city of Medan.

Discussion

The Effect of Independence on the Auditor's Ability to Detect Fraud.

From the results of the hypothesis testing analysis, it is known that independence significantly affects the auditor's ability to detect fraud, as assessed by a path coefficient of 0.735. The probability value obtained is $0.000 < 0.05$. This means that the influence of the independence variable on the auditor's ability to detect fraud is significant. Thus, independence plays an important role in detecting fraud among auditors. It is hoped that increasing the level of independence will increase the auditor's ability to detect fraud. To increase independence, auditors who receive assignments from their clients strive to be truly independent, not receive pressure from clients, and not feel embarrassed towards their

clients. In their audit assignments, they are objective and can produce quality audits. An auditor's honest attitude positively influences the auditor's expertise in the field of auditing.

The independence variable is measured by four indicators: length of relationship with the client, pressure from the client, review from fellow auditors, and provision of audit services. Based on the results of research on the responses of respondents who stated that they Strongly Agree (SS) on the independence variable, there is an average value of 80 in statement number 5, which is an indicator of review from fellow auditors, namely regarding me being honest to avoid being judged less by my professional colleagues (fellow auditors). In the team that answered, there were at most 28 respondents. This means that auditors carrying out audits must have an independent attitude so that their ability to detect fraud can increase. The results of this research have also proven that the article by (Indrawati et al., 2019) stated that the independence variable significantly influences the auditor's responsibility in detecting fraud and errors in financial reports. From the results of this test, it can be concluded that the auditor's ability to detect fraud will be better by using independence. After fraud is detected, the auditor will not be involved in carrying out fraudulent practices.

The Influence of Auditor Experience on the Auditor's Ability to Detect Fraud.

From the results of the hypothesis testing analysis, it is known that the auditor's experience significantly affects the auditor's ability to detect fraud, as assessed by a path coefficient of 0.663. The probability value obtained is $0.000 < 0.05$; this means that the influence of the auditor's experience variable on the auditor's ability to detect fraud is significant. Thus, this shows that the more experience an auditor has, the higher the auditor's ability to detect fraud.

The auditor experience variable is measured by three indicators: the length of time working as an auditor, the number of assignments completed, and the type of company handled. Based on the research results on respondents' responses who stated Agree (S) on the auditor experience variable with an average of 77.1 in statement number 1. The longer you work as an auditor, the more you can detect errors made by the object of inspection, which answered at most 27 respondents. This means that auditors carrying out audits must have more experience so that their ability to detect fraud can increase.

The results of this research are consistent with the results of research conducted by (Prameswari, Purwohedi, & Respati, 2022), which states that audit experience positively influences the ability to detect fraud. (Bandiyono, (2021) research also states a positive relationship between audit experience and fraud detection. Narayana, (2020) stated that experienced auditors not only have the ability to find errors or fraud but also can provide more accurate explanations than auditors who lack experience. An auditor's work experience concerns the length of time he has worked as an auditor, the number of assignments he has completed, and the many types of companies he has handled (Anggriawan, 2014). The longer someone has been an auditor, the more assignments they handle, and the more types of companies they handle, the more it can be said that the auditor has more experience. This experience will increase the auditor's awareness if mistakes occur. Experienced auditors will also better understand the causes of errors that occur, whether due to pure human or equipment error or intentional errors, which means fraud.

The Influence of Auditor Independence and Experience on the Auditor's Ability to Detect Fraud

From the results of the hypothesis testing analysis of Auditor Independence and Experience, it is known that independence significantly affects the auditor's ability to detect fraud, as assessed by a path coefficient of 0.574. The probability value obtained is $0.007 < 0.05$. This research supports previous research by (Indrawati et al., 2019), who state that an auditor's independence affects the auditor's ability to detect fraud. Meanwhile, the auditor's experience does not significantly affect the auditor's ability to detect fraud, as assessed by a path coefficient of 0.199. The probability value obtained is $0.399 < 0.05$. The results of this research do not support previous research by (Wahidahwati & Asyik, 2022) which found that experience influences the auditor's ability to detect fraud.

CONCLUSION

Based on the research results and previous discussion, conclusions can be drawn regarding the influence of auditor independence and experience on the auditor's ability to detect fraud at Public Accounting Firmss in Medan.

The advice that can be given in this research is that Public Accounting Firms can carry out more audit assignments, and auditors are allowed to audit various types of companies to increase the auditor's experience. Auditors are expected to maintain or improve their independence so that auditors do not become involved in fraudulent practices.

REFERENCES

Abdillah, Willy, & Hartono, J. (2015). *Partial Least Square (PLS)*. Yogyakarta: Andi Offset.

Anggriawan, E. F. (2014). Pengaruh Pengalaman Kerja, Skeptisme Profesional Dan Tekanan Waktu Terhadap Kemampuan Auditor Dalam Mendeteksi Fraud (Studi Empiris Pada Kantor Akuntan Publik Di DIY). *Nominal, Barometer Riset Akuntansi Dan Manajemen*, 3(2). <https://doi.org/10.21831/nominal.v3i2.2697>

Annelin, A., & Svanström, T. (2022). The triggers and consequences of audit team stress: Qualitative evidence from engagement teams. *International Journal of Auditing*, 26(2), 113–133. <https://doi.org/10.1111/ijau.12254>

Arsendy, M. T. (2017). Pengaruh Pengalaman Audit, Skeptisme Profesional, Red Flags, Dan Tekanan Anggaran Waktu Terhadap Kemampuan Auditor Dalam Mendeteksi Kecurangan (Studi Empiris pada Kantor Akuntan Publik di DKI Jakarta). *JOM Fekon*, 4(1), 1096–1107.

Asriadi, A., Menne, F., & Setiawan, L. (2021). Pengaruh Pengetahuan, Kemampuan Berpikir, Analisis Tugas, Pengalaman, Tekanan Waktu Terhadap Pendekripsi Kecurangan Oleh Inspektorat Kabupaten Pinrang. *Indonesian Journal of Business and Management*, 3(2), 71–80. <https://doi.org/10.35965/jbm.v3i2.647>

Bandiyono, A. (2021). Audit Experience, Work Expense, and Professional Skepticism on Auditor's Ability in Detecting Lack. *Atestasi : Jurnal Ilmiah Akuntansi*, 4(2), 325–339. <https://doi.org/10.57178/atestasi.v4i2.273>

Biksa, I. A. I., & Wiratmaja, I. D. N. (2016). Pengaruh Pengalaman, Independensi, Skeptisme Profesional Auditor pada Pendekripsi Kecurangan. *E-Jurnal Akuntansi Universitas Udayana*, 17(3), 2384–2415.

Faradina, H. (2016). Pengaruh Beban Kerja, Pengalaman Audit Dan Tipe Kepribadian

Terhadap Skeptisme Profesional Dan Kemampuan Auditor Dalam Mendeteksi Kecurangan (Studi Empiris pada KAP di Kota Medan, Padang dan Pekanbaru). *JOM Fekom*, 3(1), 1235–1249.

Ghozali, I., & Latan, H. (2015). *Partial Least Squares Konsep, Teknik Dan Aplikasi Menggunakan Program SmartPLS 3.0 Untuk Penelitian Empiris*. Semarang: Badan Penerbit UNDIP.

Indrawati, L., Cahyono, D., & Maharani, A. (2019). Pengaruh Skeptisisme Profesional, Independensi Auditor dan Pelatihan Audit Kecurangan Terhadap Kemampuan Auditor dalam Mendeteksi Kecurangan. *International Journal of Social Science and Business*, 3(4), 393. <https://doi.org/10.23887/ijssb.v3i4.21496>

Iskandar, R., Ramadhan, M. S., Mansyuri, M. I., & Ramadhan, R. (2022). Determinants of Auditor's Ability to Detect Fraud: Internal and External Factors. *International Journal of Science, Technology & Management*, 3(1), 179–195. <https://doi.org/10.46729/ijstm.v3i1.452>

Jefri, R., & Mediayt, M. (2014). Pendektsian Kecurangan (Fraud) Laporan Keuangan. *Jurnal Akuntansi*, 01(02), 56–64. Retrieved from journal.stiem.ac.id/index.php/jurakun/article/download/106/97

Kassem, R. (2023). External auditors' use and perceptions of fraud factors in assessing fraudulent financial reporting risk (FFRR): Implications for audit policy and practice. *Security Journal*, (0123456789). <https://doi.org/10.1057/s41284-023-00399-w>

Mulyadi. (2009). *Sistem Akuntansi* (3rd ed.). Jakarta: PT. Salemba Empat.

Narayana, A. A. S. (2020). Auditors experience as moderating effect investigative abilities and understanding of red flags on fraud detection. *International Research Journal of Management, IT and Social Sciences*, 7(1), 205–216. <https://doi.org/10.21744/irjmis.v7n1.837>

Noch, M. Y., Ibrahim, M. B. H., Akbar, M. A., Kartim, K., & Sutisman, E. (2022). Independence and Competence on Audit Fraud Detection: Role of Professional Skepticism as Moderating. *Jurnal Akuntansi*, 26(1), 161. <https://doi.org/10.24912/ja.v26i1.823>

Peuranda, J. H., Hasan, A., & Silfi, A. (2019). Pengaruh Independensi, Kompetensi dan Skeptisme Profesional terhadap Kemampuan Auditor dalam Mendeteksi Kecurangan dengan Pelatihan Audit Kecurangan sebagai Variabel Moderasi. *Jurnal Ekonomi*, 27(1), 1–13. Retrieved from <http://je.ejournal.unri.ac.id/>

Prameswari, A. D., Purwohedi, U., & Respati, D. K. (2022). Factors Affecting Auditor's Ability to Detect Fraud. *Jurnal Akuntansi, Perpajakan Dan Auditing*, 3(1), 78–96. <https://doi.org/10.21009/japa.0301.06>

Salsabil, A. (2020). Pengaruh Pengalaman Auditor, Independensi, Pendidikan Berkelanjutan, Tekanan Waktu Kerja Terhadap Pendektsian Kecurangan Oleh Auditor Eksternal Dengan Skeptisisme Profesional Sebagai Variabel Moderasi. *Prosiding Seminar Nasional Pakar*, 1–7. <https://doi.org/10.25105/pakar.v0i0.6907>

Sarstedt, M., & Hwang, H. (2020). Advances in composite-based structural equation modeling. *Behaviormetrika*, 47(1), 213–217. <https://doi.org/10.1007/s41237-020-00105-9>

Silalahi, S. P. (2014). Faktor-Faktor Yang Mempengaruhi Perusahaan Membutuhkan Jasa Kantor Akuntan Publik. *Akuntansi*, 3(1), 29–42.

Wahidahwati, W., & Asyik, N. F. (2022). Determinants of Auditors Ability in Fraud

Detection. *Cogent Business and Management*, 9(1).

<https://doi.org/10.1080/23311975.2022.2130165>

Wedemeyer, P. D. (2010). A discussion of auditor judgment as the critical component in audit quality- A practitioner's perspective. *International Journal of Disclosure and Governance*, 7(4), 320–333. <https://doi.org/10.1057/jdg.2010.19>

Widiyastuti, M., & Pamudji, S. (2009). Pengaruh Kompetensi, Independensi, Dan Profesionalisme Terhadap Kemampuan Auditor Dalam Mendeteksi Kecurangan (Fraud). *Jurnal Value Added*, 5(2), 52–73.